#### **Cluster Analysis**

## What is Cluster Analysis?

- Cluster: a collection of data objects
  - Similar to one another within the same cluster
  - Dissimilar to the objects in other clusters
- Cluster analysis
  - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes
- Typical applications
  - As a stand-alone tool to get insight into data distribution
  - As a preprocessing step for other algorithms

# Clustering: Rich Applications and Multidisciplinary Efforts

- Pattern Recognition
- Spatial Data Analysis
  - Create thematic maps in GIS by clustering feature spaces
  - Detect spatial clusters or for other spatial mining tasks
- Image Processing
- Economic Science (especially market research)
- WWW
  - Document classification
  - Cluster Weblog data to discover groups of similar access patterns

## Examples of Clustering Applications

- <u>Marketing</u>: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- <u>Land use</u>: Identification of areas of similar land use in an earth observation database
- <u>Insurance</u>: Identifying groups of motor insurance policy holders with a high average claim cost
- <u>City-planning</u>: Identifying groups of houses according to their house type, value, and geographical location
- <u>Earth-quake studies</u>: Observed earth quake epicenters should be clustered along continent faults

# Quality: What Is Good Clustering?

- A good clustering method will produce high quality clusters with
  - high intra-class similarity
  - low inter-class similarity
- The <u>quality</u> of a clustering result depends on both the similarity measure used by the method and its implementation
- The <u>quality</u> of a clustering method is also measured by its ability to discover some or all of

#### Measure the Quality of Clustering

- Dissimilarity/Similarity metric: Similarity is expressed in terms of a distance function, typically metric: d(i, j)
- There is a separate "quality" function that measures the "goodness" of a cluster.
- The definitions of distance functions are usually very different for interval-scaled, boolean, categorical, ordinal ratio, and vector variables.
- Weights should be associated with different variables based on applications and data semantics.

#### Requirements of Clustering in Data Mining

- Scalability
- Ability to deal with different types of attributes
- Ability to handle dynamic data
- Discovery of clusters with arbitrary shape
- Minimal requirements for domain knowledge to determine input parameters
- Able to deal with noise and outliers
- Insensitive to order of input records
- High dimensionality
- Incorporation of user-specified constraints
- Interpretability and usability

#### Data Structures

Data matrix
– (two modes)

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

Dissimilarity matrix
 – (one mode)

$$\begin{bmatrix} 0 & & & \\ d(2,1) & 0 & & \\ d(3,1) & d(3,2) & 0 & \\ \vdots & \vdots & \vdots & \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

#### Type of data in clustering analysis

- Interval-scaled variables
- Binary variables
- Nominal, ordinal, and ratio variables
- Variables of mixed types

#### Interval-valued variables

- Standardize data
  - Calculate the mean absolute deviation:  $\int_{f} \underline{h}_{n_{f}} dh_{n_{f}} dh_{$

$$m_f = \frac{1}{n}(x_{1f} + x_{2f} + \dots + x_{nf})$$

where

- Calculate the standardized measurement (*z*-score)  $z_{if} = \frac{1}{s_f} \frac{1}{s_f}$ 

 Using mean absolute deviation is more robust than using standard deviation

#### Similarity and Dissimilarity Between Objects

- <u>Distances</u> are normally used to measure the <u>similarity</u> or <u>dissimilarity</u> between two data objects
   d(i, j) = q (|x<sub>i</sub> - x<sub>j</sub>|<sup>q</sup> + |x<sub>i</sub> - x<sub>j</sub>|<sup>q</sup> + ...+|x<sub>i</sub> - x<sub>j</sub>|<sup>q</sup>)

   Some popular ones include: *Minkowski*
- Some popular ones include: Minkowski distance:

where 
$$i = (x_{i1}, x_{i2}, ..., x_{ip})$$
 and  $j = (x_{j1}, x_{j2}, ..., x_{jp})$  are  
two *p*-dimension  $\hat{k}_{ij}$  and  $\hat{k}_{ij}$  and  $\hat{k}_{ij}$ ,  $\hat{k}_{jj}$  are  
integer

• If  $\alpha = 1$  dis Manhattan distance

# Similarity and Dissimilarity Between Objects (Cont.)

• If q = 2, d is Euclidean distance:

$$d(i,j) = \sqrt{(|x_{i_1} - x_{j_1}|^2 + |x_{i_2} - x_{j_2}|^2 + \dots + |x_{i_p} - x_{j_p}|^2)}$$

- Properties
  - d(i,j) ≥ 0
  - d(i,i) = 0
  - d(i,j) = d(j,i)
  - $d(i,j) \leq d(i,k) + d(k,j)$
- Also, one can use weighted distance, parametric Pearson product moment correlation, or other disimilarity measures

## Binary Variables Object j

 A contingency table for <sub>Object</sub> binary data

- Distance measure for symmetric binary variables:
- Distance measure for asymmetric binary variables:

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{a} + \frac{1}{a} + \frac{1}{b} + \frac{1}{a} + \frac{1}$$

$$sim_{Jaccard}(i,j) = \frac{a}{a+b+c}$$

### Dissimilarity between Binary Variables

#### Example

| Name | Gender | Fever | Cough | Test-1 | Test-2 | Test-3 | Test-4 |
|------|--------|-------|-------|--------|--------|--------|--------|
| Jack | М      | Y     | Ν     | Р      | N      | Ν      | Ν      |
| Mary | F      | Y     | Ν     | Р      | N      | Р      | Ν      |
| Jim  | Μ      | Y     | P     | N      | N      | N      | Ν      |

- gender is a symmetric attribute
- the remaining attributes are asymmetric binary
- let the values, yrang  $P \Rightarrow e \frac{0+1}{2+0+1}$  and the value N be set to 0

$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$
$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

#### **Nominal Variables**

- A generalization of the binary variable in that it can take more than 2 states, e.g., red, yellow, blue, green
- Method 1: Simple matching – *m*: # of matches,  $p: total #_p of variables$

- Method 2: use a large number of binary variables
   creating a new binary variable for each of the M

#### **Ordinal Variables**

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
- Can be treated like interval-scaled  $\{1, \dots, M_f\}$ 
  - replace  $x_{if}$  by their rank
  - map the range of each variable onto [0, 1] by replacing
     *i*-th object in the *f*-th variable by

$$z_{if} = rac{r_{if} - 1}{M_f - 1}$$

 compute the dissimilarity using methods for intervalscaled variables

#### **Ratio-Scaled Variables**

- <u>Ratio-scaled variable</u>: a positive measurement on a nonlinear scale, approximately at exponential scale, such as Ae<sup>Bt</sup> or Ae<sup>-Bt</sup>
- Methods:
  - treat them like interval-scaled variables—not a good choice! (why?—the scale can be distorted)
  - apply logarithmic transformation

$$y_{if} = log(x_{if})$$

 treat them as continuous ordinal data treat their rank as interval-scaled

# Variables of Mixed Types

- A database may contain all the six types of variables
  - symmetric binary, asymmetric binary, nominal,
- One may  $dse^{j}a$  weighted formula to combine f = 1 ijtheir effects
  - -f is binary or nominal:

 $d_{ii}^{(f)} = 0$  if  $x_{if} = x_{if}$ , or  $d_{ii}^{(f)} = 1$  otherwise

- *f* is interval-based: use the normalized distance *f* is ordinal or ratio-scaled  $z_{if} = \frac{Z_{if} 1}{M_{f} 1}$
- - compute ranks r<sub>if</sub> and

#### Vector Objects

- Vector objects: keywords in documents, gene features in micro-arrays, etc.
- Broad applications: information retrieval, biologic taxonor  $\vec{X^t} \cdot \vec{Y}$
- biologic taxonor • Cosine measure  $s(\vec{X}, \vec{Y}) = \frac{\vec{X}^t \cdot \vec{Y}}{|\vec{X}||\vec{Y}|},$

 $\vec{X^t}$  is a transposition of vector  $\vec{X}$ ,  $|\vec{X}|$  is the Euclidean normal of vector  $\vec{X}$ ,

• A variant: Tan 
$$s(\vec{X}, \vec{Y}) = \frac{\vec{X}^t \cdot \vec{Y}}{\vec{X}^t \cdot \vec{X} + \vec{Y}^t \cdot \vec{Y} - \vec{X}^t \cdot \vec{Y}}$$

#### Major Clustering Approaches (I)

- Partitioning approach:
  - Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors
  - Typical methods: k-means, k-medoids, CLARANS
- <u>Hierarchical approach</u>:
  - Create a hierarchical decomposition of the set of data (or objects) using some criterion
  - Typical methods: Diana, Agnes, BIRCH, ROCK, CAMELEON
- <u>Density-based approach</u>:
  - Based on connectivity and density functions
  - Typical methods: DBSACN, OPTICS, DenClue

#### Major Clustering Approaches (II)

- Grid-based approach:
  - based on a multiple-level granularity structure
  - Typical methods: STING, WaveCluster, CLIQUE
- <u>Model-based</u>:
  - A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other
  - Typical methods: EM, SOM, COBWEB
- Frequent pattern-based:
  - Based on the analysis of frequent patterns
  - Typical methods: pCluster
- User-guided or constraint-based:
  - Clustering by considering user-specified or application-specific constraints
  - Typical methods: COD (obstacles), constrained clustering

#### Typical Alternatives to Calculate the Distance between Clusters

- Single link: smallest distance between an element in one cluster and an element in the other, i.e.,  $dis(K_i, K_j) = min(t_{ip}, t_{jq})$
- Complete link: largest distance between an element in one cluster and an element in the other, i.e.,  $dis(K_i, K_j) = max(t_{ip}, t_{jq})$
- Average: avg distance between an element in one cluster and an element in the other, i.e., dis(K<sub>i</sub>, K<sub>j</sub>) = avg(t<sub>ip</sub>, t<sub>jq</sub>)
- Centroid: distance between the centroids of two

# Centroid, Radius and Diameter of a Cluster (for numerical data sets)

- Centroid: the "middle" of a cluster  $C_m = \frac{\sum_{i=1}^N (t_{ip})}{N}$
- Radius: square root of average distance from any point of the cluster to its centroid  $\frac{\sum_{i=1}^{N} \frac{(t_i c_m)^2}{N}}{N}$

• Diameter: square root of  $average_{i} = \sqrt{\frac{1}{D_{m}} e_{i}} + \frac{1}{Q} e_{i}$ distance between all pairs of points in the cluster

#### Partitioning Algorithms: Basic Concept

• <u>Partitioning method</u>: Construct a partition of a database **D** of **n** objects into a set of **k** clusters, s.t., min sum of squared distance  $\sum_{m=1}^{k} \sum_{t_{mi} \in Km} (C_m - t_{mi})^2$ 

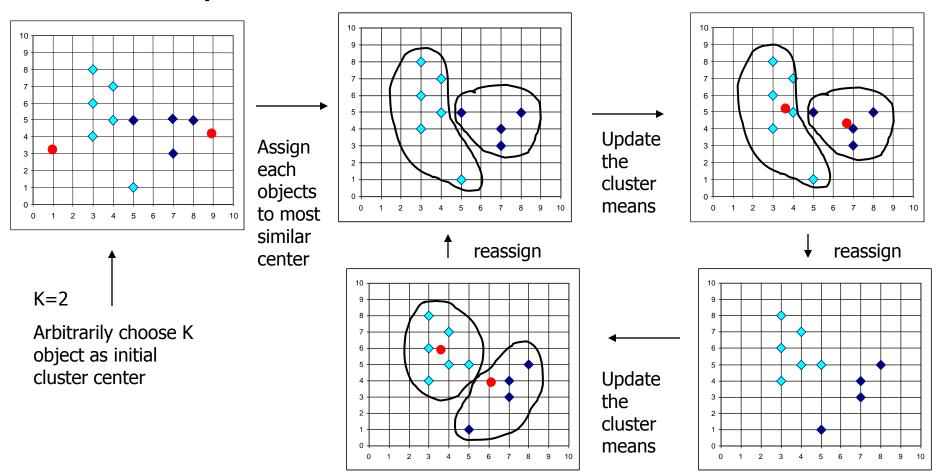
- Given a *k*, find a partition of *k clusters* that optimizes the chosen partitioning criterion
  - Global optimal: exhaustively enumerate all partitions
  - Heuristic methods: *k-means* and *k-medoids* algorithms
  - <u>k-means</u> (MacQueen'67): Each cluster is represented by the center of the cluster
  - <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects

#### The K-Means Clustering Method

- Given *k*, the *k-means* algorithm is implemented in four steps:
  - Partition objects into *k* nonempty subsets
  - Compute seed points as the centroids of the clusters of the current partition (the centroid is the center, i.e., *mean point*, of the cluster)
  - Assign each object to the cluster with the nearest seed point
  - Go back to Step 2, stop when no more new assignment

#### The K-Means Clustering Method

• Example



#### Comments on the *K-Means* Method

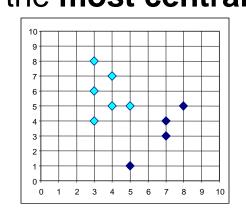
- <u>Strength:</u> Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n.</li>
  - Comparing: PAM: O(k(n-k)<sup>2</sup>), CLARA: O(ks<sup>2</sup> + k(n-k))
- <u>Comment</u>: Often terminates at a *local optimum*. The *global* optimum may be found using techniques such as: deterministic annealing and genetic algorithms
- Weakness
  - Applicable only when *mean* is defined, then what about categorical data?
  - Need to specify *k*, the *number* of clusters, in advance
  - Unable to handle noisy data and *outliers*
  - Not suitable to discover clusters with non-convex shapes

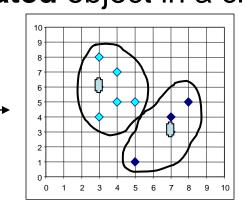
#### Variations of the K-Means Method

- A few variants of the *k-means* which differ in
  - Selection of the initial *k* means
  - Dissimilarity calculations
  - Strategies to calculate cluster means
- Handling categorical data: *k-modes* (Huang'98)
  - Replacing means of clusters with modes
  - Using new dissimilarity measures to deal with categorical objects
  - Using a <u>frequency</u>-based method to update modes of clusters
  - A mixture of categorical and numerical data: *k-prototype* method

#### What Is the Problem of the K-Means Method?

- The k-means algorithm is sensitive to outliers !
  - Since an object with an extremely large value may substantially distort the distribution of the data.
- K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster.



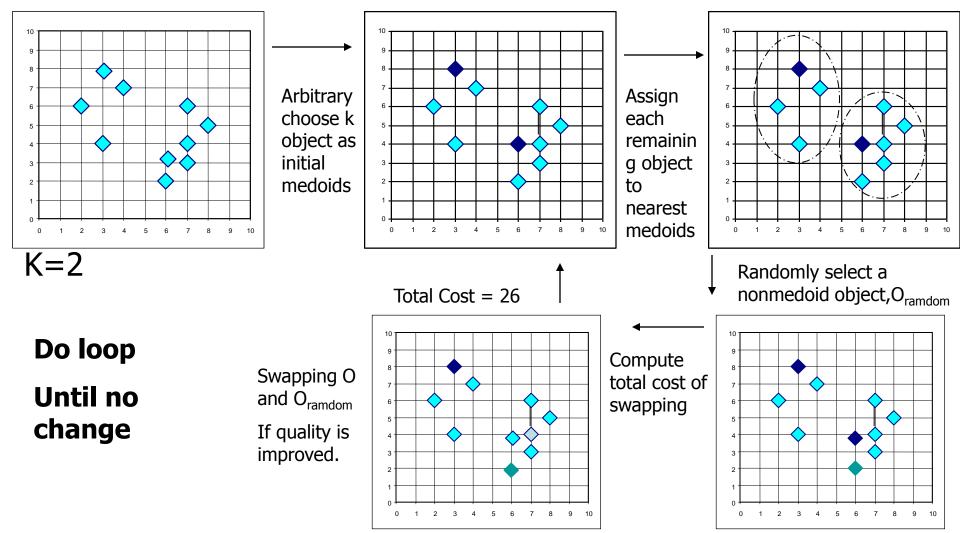


#### The K-Medoids Clustering Method

- Find *representative* objects, called <u>medoids</u>, in clusters
- *PAM* (Partitioning Around Medoids, 1987)
  - starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
  - PAM works effectively for small data sets, but does not scale well for large data sets
- CLARA (Kaufmann & Rousseeuw, 1990)
- CLARANS (Ng & Han, 1994): Randomized sampling
- Focusing + spatial data structure (Ester et al., 1995)

#### A Typical K-Medoids Algorithm (PAM)

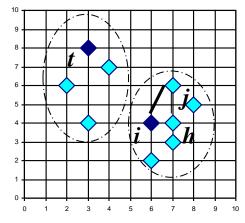
Total Cost = 20



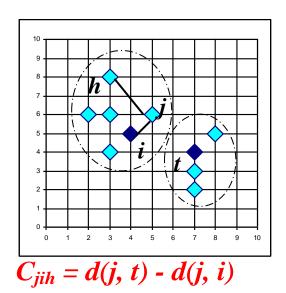
# PAM (Partitioning Around Medoids) (1987)

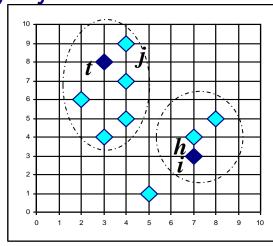
- PAM (Kaufman and Rousseeuw, 1987), built in Splus
- Use real object to represent the cluster
  - Select *k* representative objects arbitrarily
  - For each pair of non-selected object *h* and selected object *i*, calculate the total swapping cost *TC<sub>ih</sub>*
  - For each pair of *i* and *h*,
    - If *TC<sub>ih</sub>* < 0, *i* is replaced by *h*
    - Then assign each non-selected object to the most similar representative object

# PAM Clustering: Total swapping cost $TC_{ih} = \sum_{j} C_{jih}$

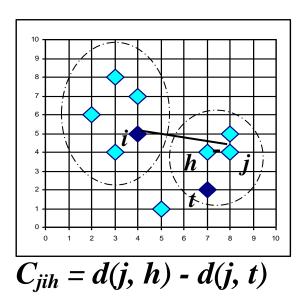


 $C_{jih} = d(j, h) - d(j, i)$ 





 $C_{jih} = 0$ 



## What Is the Problem with PAM?

- Pam is more robust than k-means in the presence of noise and outliers because a medoid is less influenced by outliers or other extreme values than a mean
- Pam works efficiently for small data sets but does not scale well for large data sets.
  - $O(k(n-k)^2)$  for each iteration

where n is # of data,k is # of clusters

→ Sampling based method,

#### CLARA (Clustering Large Applications) (1990)

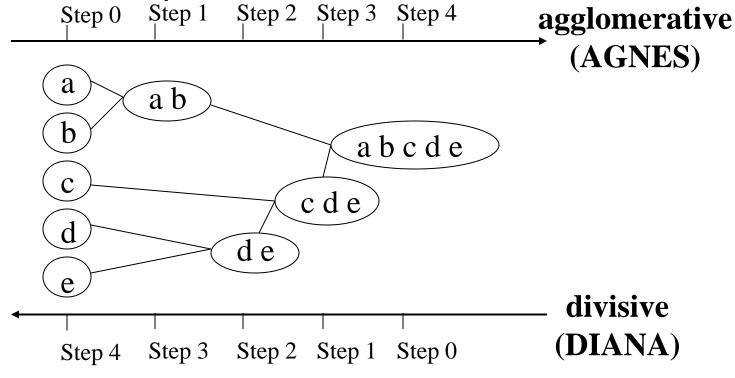
- CLARA (Kaufmann and Rousseeuw in 1990)
  - Built in statistical analysis packages, such as S+
- It draws *multiple samples* of the data set, applies *PAM* on each sample, and gives the best clustering as the output
- <u>Strength</u>: deals with larger data sets than PAM
- Weakness:
  - Efficiency depends on the sample size
  - A good clustering based on samples will not

### CLARANS ("Randomized" CLARA) (1994)

- CLARANS (A Clustering Algorithm based on Randomized Search) (Ng and Han'94)
- CLARANS draws sample of neighbors dynamically
- The clustering process can be presented as searching a graph where every node is a potential solution, that is, a set of k medoids
- If the local optimum is found, *CLARANS* starts with new randomly selected node in search for a new local optimum
  - It is used as  $\mathbf{f}$  is a set and a solution theory heath  $\mathbf{D}\mathbf{A}\mathbf{A}$

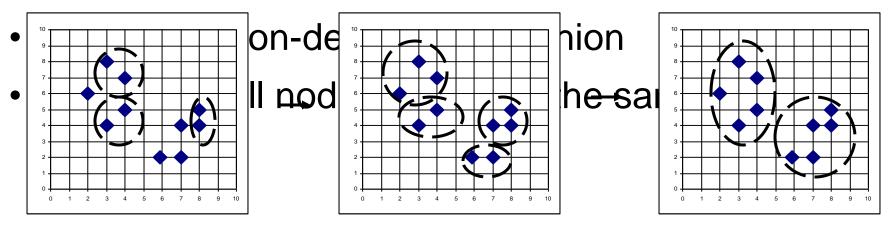
### **Hierarchical Clustering**

Use distance matrix as clustering criteria. This method does not require the number of clusters
 *k* as an input, but needs a termination condition



#### AGNES (Agglomerative Nesting)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., Splus
- Use the Single-Link method and the dissimilarity matrix.
- Merge nodes that have the least dissimilarity



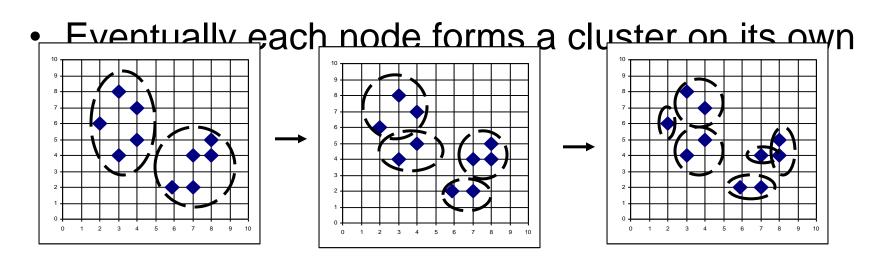
#### **Dendrogram:** Shows How the Clusters are Merged

Decompose data objects into a several levels of nested partitioning (<u>tree</u> of clusters), calle<del>d a <u>dendrogram</u>.</del>

A <u>clustering</u> of the data objects is obtained by <u>cutting</u> the dendrogram at the desired level, then each <u>connected</u> <u>component</u> forms a cluster.

#### DIANA (Divisive Analysis)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., Splus
- Inverse order of AGNES



### Recent Hierarchical Clustering Methods

- Major weakness of agglomerative clustering methods
  - <u>do not scale</u> well: time complexity of at least  $O(n^2)$ , where *n* is the number of total objects
  - can never undo what was done previously
- Integration of hierarchical with distance-based clustering
  - BIRCH (1996): uses CF-tree and incrementally adjusts the quality of sub-clusters
  - <u>ROCK (1999)</u>: clustering categorical data by neighbor and link analysis

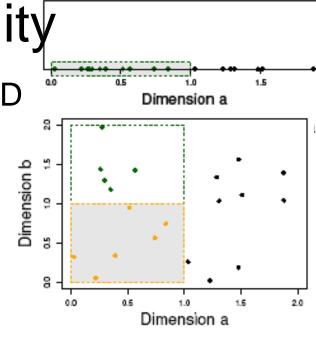
#### Clustering High-Dimensional Data

- Clustering high-dimensional data
  - Many applications: text documents, DNA micro-array data
  - Major challenges:
    - Many irrelevant dimensions may mask clusters
    - Distance measure becomes meaningless—due to equi-distance
    - Clusters may exist only in some subspaces
- Methods
  - Feature transformation: only effective if most dimensions are relevant
    - PCA & SVD useful only when features are highly correlated/redundant
  - Feature selection: wrapper or filter approaches
    - useful to find a subspace where the data have nice clusters
  - Subspace-clustering: find clusters in all the possible subspaces
    - CLIQUE, ProClus, and frequent pattern-based clustering

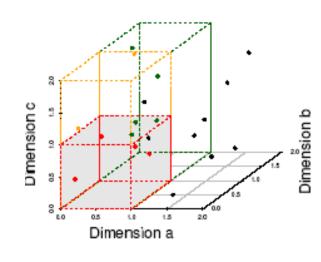
#### The Curse of Dimensionality

(graphs adapted from Parsons et al. KDD

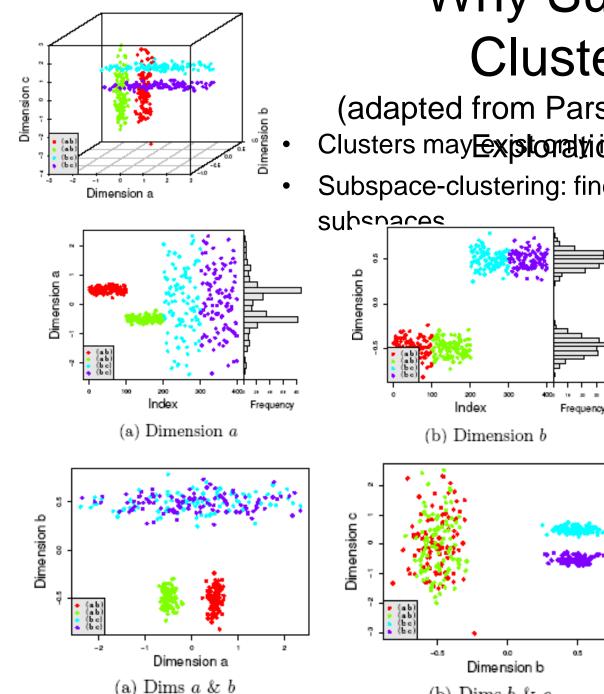
- Explorations 2004)
   Data in only one dimension is relatively packed
- Adding a dimension "stretch" the points across that dimension, making them further apart
- Adding more dimensions will make the points further apart high dimensional data is extremely sparse
- Distance measure becomes



(b) 6 Objects in One Unit Bin

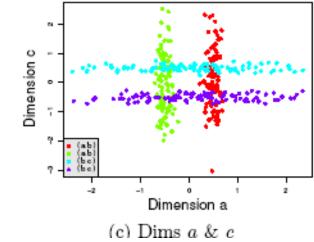


(c) 4 Objects in One Unit Bin



(b) Dims b & c

0 Dimension 100 200 300 400 Index Frequency (c) Dimension c



#### vvny Subspace **Clustering**?

(adapted from Parsons et al. SIGKDD

Clusters may Existent from so 200 (34) spaces

Subspace-clustering: find clusters in all the

## What Is Outlier Discovery?

- What are outliers?
  - The set of objects are considerably dissimilar from the remainder of the data
  - Example: Sports: Michael Jordon, Wayne Gretzky, ...
- Problem: Define and find outliers in large data sets
- Applications:
  - Credit card fraud detection
  - Telecom fraud detection
  - Customer segmentation
  - Medical analysis



Data Values

Assume a model underlying distribution that generates data set (e.g. normal distribution)

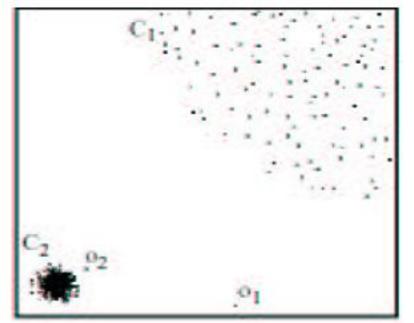
- Use discordancy tests depending on
  - data distribution
  - distribution parameter (e.g., mean, variance)
  - number of expected outliers
- Drawbacks
  - most tests are for single attribute
  - In many cases, data distribution may not be known

#### Outlier Discovery: Distance-Based Approach

- Introduced to counter the main limitations imposed by statistical methods
  - We need multi-dimensional analysis without knowing data distribution
- Distance-based outlier: A DB(p, D)-outlier is an object O in a dataset T such that at least a fraction p of the objects in T lies at a distance greater than D from O
- Algorithms for mining distance-based outliers
  - Index-based algorithm
  - Nested-loop algorithm
    - Call based algorithms

# Local Outlier Detection

- Distance-based outlier detection is based on global distance distribution
- It encounters difficulties to identify outliers if data is not uniformly distributed
- Ex. C<sub>1</sub> contains 400 loosely distributed points, C<sub>2</sub> has 100 tightly condensed points, 2 outlier points o<sub>1</sub>, o<sub>2</sub>
- Distance-based method cannot identify o<sub>2</sub> as an



- Local outlier factor (LOF)
  - Assume outlier is not crisp
  - Each point has a LOF