
Cluster Analysis 



What is Cluster Analysis? 

• Cluster: a collection of data objects 

– Similar to one another within the same cluster 

– Dissimilar to the objects in other clusters 

• Cluster analysis 

– Finding similarities between data according to the 

characteristics found in the data and grouping similar 

data objects into clusters 

• Unsupervised learning: no predefined classes 

• Typical applications 

– As a stand-alone tool to get insight into data distribution  

– As a preprocessing step for other algorithms 



Clustering: Rich Applications 

and Multidisciplinary Efforts  

• Pattern Recognition 

• Spatial Data Analysis  

– Create thematic maps in GIS by clustering feature 

spaces 

– Detect spatial clusters or for other spatial mining tasks 

• Image Processing 

• Economic Science (especially market research) 

• WWW 

– Document classification 

– Cluster Weblog data to discover groups of similar 

access patterns 



Examples of Clustering 

Applications 
• Marketing: Help marketers discover distinct groups in their customer 

bases, and then use this knowledge to develop targeted marketing 

programs 

• Land use: Identification of areas of similar land use in an earth 

observation database 

• Insurance: Identifying groups of motor insurance policy holders with a 

high average claim cost 

• City-planning: Identifying groups of houses according to their house 

type, value, and geographical location 

• Earth-quake studies: Observed earth quake epicenters should be 

clustered along continent faults 



Quality: What Is Good 

Clustering? 

• A good clustering method will produce high 

quality clusters with 

– high intra-class similarity 

– low inter-class similarity  

• The quality of a clustering result depends on 

both the similarity measure used by the method 

and its implementation 

• The quality of a clustering method is also 

measured by its ability to discover some or all of 

the hidden patterns 



Measure the Quality of 

Clustering 

• Dissimilarity/Similarity metric: Similarity is 

expressed in terms of a distance function, 

typically metric: d(i, j) 

• There is a separate “quality” function that 

measures the “goodness” of a cluster. 

• The definitions of distance functions are usually 

very different for interval-scaled, boolean, 

categorical, ordinal ratio, and vector variables. 

• Weights should be associated with different 

variables based on applications and data 

semantics. 



Requirements of Clustering in Data 

Mining  
• Scalability 

• Ability to deal with different types of attributes 

• Ability to handle dynamic data  

• Discovery of clusters with arbitrary shape 

• Minimal requirements for domain knowledge to determine input 

parameters 

• Able to deal with noise and outliers 

• Insensitive to order of input records 

• High dimensionality 

• Incorporation of user-specified constraints 

• Interpretability and usability 



Data Structures 

• Data matrix 

– (two modes) 

 

 

 

• Dissimilarity matrix 

– (one mode) 
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Type of data in clustering 

analysis 

• Interval-scaled variables 

• Binary variables 

• Nominal, ordinal, and ratio variables 

• Variables of mixed types 



Interval-valued variables 

• Standardize data 

– Calculate the mean absolute deviation: 

 

where 

– Calculate the standardized measurement (z-score) 

 

• Using mean absolute deviation is more robust 

than using standard deviation  
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Similarity and Dissimilarity 

Between Objects 

• Distances are normally used to measure the 

similarity or dissimilarity between two data 

objects 

• Some popular ones include: Minkowski 

distance: 

 

where  i = (xi1, xi2, …, xip) and j = (xj1, xj2, …, xjp) are 

two p-dimensional data objects, and q is a positive 

integer 

• If q = 1, d is Manhattan distance 
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Similarity and Dissimilarity 

Between Objects (Cont.) 

• If q = 2, d is Euclidean distance: 

 

– Properties 

• d(i,j)  0 

• d(i,i) = 0 

• d(i,j) = d(j,i) 

• d(i,j)  d(i,k) + d(k,j) 

• Also, one can use weighted distance, 

parametric Pearson product moment 

correlation, or other disimilarity measures 
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Binary Variables 

• A contingency table for 

binary data 

 

• Distance measure for 

symmetric binary 

variables:  

• Distance measure for 

asymmetric binary 

variables:  
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Dissimilarity between Binary 

Variables 

• Example 

 

 

 

 

– gender is a symmetric attribute 

– the remaining attributes are asymmetric binary 

– let the values Y and P be set to 1, and the value N be set to 0 

Name Gender Fever Cough Test-1 Test-2 Test-3 Test-4

Jack M Y N P N N N

Mary F Y N P N P N

Jim M Y P N N N N
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Nominal Variables 

• A generalization of the binary variable in that it 

can take more than 2 states, e.g., red, yellow, 

blue, green 

• Method 1: Simple matching 

– m: # of matches, p: total # of variables 

 

 

• Method 2: use a large number of binary variables 

– creating a new binary variable for each of the M 

nominal states 
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Ordinal Variables 

• An ordinal variable can be discrete or continuous 

• Order is important, e.g., rank 

• Can be treated like interval-scaled  

– replace xif  by their rank  

– map the range of each variable onto [0, 1] by replacing 

i-th object in the f-th variable by 

 

 

– compute the dissimilarity using methods for interval-

scaled variables 
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Ratio-Scaled Variables 

• Ratio-scaled variable: a positive measurement on 

a nonlinear scale, approximately at exponential 

scale,   such as AeBt or Ae-Bt  

• Methods: 

– treat them like interval-scaled variables—not a good 

choice! (why?—the scale can be distorted) 

– apply logarithmic transformation 

yif = log(xif) 

– treat them as continuous ordinal data treat their rank as 

interval-scaled 



Variables of Mixed Types 

• A database may contain all the six types of 
variables 
– symmetric binary, asymmetric binary, nominal, 

ordinal, interval and ratio 

• One may use a weighted formula to combine 
their effects 

 
– f  is binary or nominal: 

dij
(f) = 0  if xif = xjf , or dij

(f) = 1 otherwise 

– f  is interval-based: use the normalized distance 

– f  is ordinal or ratio-scaled 

• compute ranks rif and   

• and treat zif as interval-scaled 
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Vector Objects 

• Vector objects: keywords in documents, 

gene features in micro-arrays, etc. 

• Broad applications: information retrieval, 

biologic taxonomy, etc. 

• Cosine measure 

 

 

• A variant: Tanimoto coefficient 

 

 



Major Clustering 

Approaches (I) 

• Partitioning approach:  

– Construct various partitions and then evaluate them by some criterion, e.g., 

minimizing the sum of square errors 

– Typical methods: k-means, k-medoids, CLARANS 

• Hierarchical approach:  

– Create a hierarchical decomposition of the set of data (or objects) using 

some criterion 

– Typical methods: Diana, Agnes, BIRCH, ROCK, CAMELEON 

• Density-based approach:  

– Based on connectivity and density functions 

– Typical methods: DBSACN, OPTICS, DenClue 

 



Major Clustering 

Approaches (II) 
• Grid-based approach:  

– based on a multiple-level granularity structure 

– Typical methods: STING, WaveCluster, CLIQUE 

• Model-based:  

– A model is hypothesized for each of the clusters and tries to find the best fit 

of that model to each other 

– Typical methods: EM, SOM, COBWEB 

• Frequent pattern-based: 

– Based on the analysis of frequent patterns 

– Typical methods: pCluster 

• User-guided or constraint-based:  

– Clustering by considering user-specified or application-specific constraints 

– Typical methods: COD (obstacles), constrained clustering 



Typical Alternatives to Calculate the 

Distance between Clusters 
• Single link:  smallest distance between an element in 

one cluster and an element in the other, i.e.,  dis(Ki, Kj) = 

min(tip, tjq) 

• Complete link: largest distance between an element in 

one cluster and an element in the other, i.e.,  dis(Ki, Kj) = 

max(tip, tjq) 

• Average: avg distance between an element in one 

cluster and an element in the other, i.e.,  dis(Ki, Kj) = 

avg(tip, tjq) 

• Centroid: distance between the centroids of two 

clusters, i.e.,  dis(Ki, Kj) = dis(Ci, Cj) 



Centroid, Radius and Diameter of a 

Cluster (for numerical data sets) 

• Centroid:  the “middle” of a cluster 

 

• Radius: square root of average distance from any point 

of the cluster to its centroid 

 

 

• Diameter: square root of average mean squared 

distance between all pairs of points in the cluster 
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Partitioning Algorithms: Basic 

Concept 
• Partitioning method: Construct a partition of a database D 

of n objects into a set of k clusters, s.t., min sum of 

squared distance 

 

 

• Given a k, find a partition of k clusters that optimizes the 

chosen partitioning criterion 

– Global optimal: exhaustively enumerate all partitions 

– Heuristic methods: k-means and k-medoids algorithms 

– k-means (MacQueen’67): Each cluster is represented by the center 

of the cluster 

– k-medoids or PAM (Partition around medoids) (Kaufman & 

Rousseeuw’87): Each cluster is represented by one of the objects 

in the cluster   
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The K-Means Clustering Method  

• Given k, the k-means algorithm is 

implemented in four steps: 

– Partition objects into k nonempty subsets 

– Compute seed points as the centroids of the 

clusters of the current partition (the centroid is the 

center, i.e., mean point, of the cluster) 

– Assign each object to the cluster with the nearest 

seed point   

– Go back to Step 2, stop when no more new 

assignment 



The K-Means Clustering Method  

• Example 
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Comments on the K-Means 

Method 
• Strength: Relatively efficient: O(tkn), where n is # objects, k 

is # clusters, and t  is # iterations. Normally, k, t << n. 

• Comparing: PAM: O(k(n-k)2 ), CLARA: O(ks2 + k(n-k)) 

• Comment: Often terminates at a local optimum. The global 

optimum may be found using techniques such as: 

deterministic annealing and genetic algorithms 

• Weakness 

– Applicable only when mean is defined, then what about categorical 

data? 

– Need to specify k, the number of clusters, in advance 

– Unable to handle noisy data and outliers 

– Not suitable to discover clusters with non-convex shapes 



Variations of the K-Means Method 

• A few variants of the k-means which differ in 

– Selection of the initial k means 

– Dissimilarity calculations 

– Strategies to calculate cluster means 

• Handling categorical data: k-modes (Huang’98) 

– Replacing means of clusters with modes 

– Using new dissimilarity measures to deal with categorical objects 

– Using a frequency-based method to update modes of clusters 

– A mixture of categorical and numerical data: k-prototype method 



What Is the Problem of the K-Means 

Method? 

• The k-means algorithm is sensitive to outliers ! 

– Since an object with an extremely large value may substantially 

distort the distribution of the data. 

• K-Medoids:  Instead of taking the mean value of the object 

in a cluster as a reference point, medoids can be used, 

which is the most centrally located object in a cluster.  
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The K-Medoids Clustering Method 

• Find representative objects, called medoids, in clusters 

• PAM (Partitioning Around Medoids, 1987) 

– starts from an initial set of medoids and iteratively replaces one 

of the medoids by one of the non-medoids if it improves the total 

distance of the resulting clustering 

– PAM works effectively for small data sets, but does not scale 

well for large data sets 

• CLARA (Kaufmann & Rousseeuw, 1990) 

• CLARANS (Ng & Han, 1994): Randomized sampling 

• Focusing + spatial data structure (Ester et al., 1995) 



A Typical K-Medoids Algorithm (PAM) 
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PAM (Partitioning Around Medoids) 

(1987) 

• PAM (Kaufman and Rousseeuw, 1987), built in 

Splus 

• Use real object to represent the cluster 

– Select k representative objects arbitrarily 

– For each pair of non-selected object h and selected 

object i, calculate the total swapping cost TCih 

– For each pair of i and h,  

• If TCih < 0, i is replaced by h 

• Then assign each non-selected object to the most 

similar representative object 

– repeat steps 2-3 until there is no change 



PAM Clustering: Total swapping cost  

TCih=jCjih 
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What Is the Problem with PAM? 

• Pam is more robust than k-means in the 

presence of noise and outliers because a 

medoid is less influenced by outliers or other 

extreme values than a mean 

• Pam works efficiently for small data sets but 

does not scale well for large data sets. 

– O(k(n-k)2 ) for each iteration  

   where n is # of data,k is # of clusters 

Sampling based method,  

 CLARA(Clustering LARge Applications) 



CLARA (Clustering Large 

Applications) (1990) 

• CLARA (Kaufmann and Rousseeuw in 1990) 

– Built in statistical analysis packages, such as S+ 

• It draws multiple samples of the data set, 

applies PAM on each sample, and gives the 

best clustering as the output 

• Strength: deals with larger data sets than PAM 

• Weakness: 

– Efficiency depends on the sample size 

– A good clustering based on samples will not 

necessarily represent a good clustering of the whole 



CLARANS (“Randomized” 

CLARA) (1994) 

• CLARANS (A Clustering Algorithm based on 

Randomized Search)  (Ng and Han’94) 

• CLARANS draws sample of neighbors 

dynamically 

• The clustering process can be presented as 

searching a graph where every node is a potential 

solution, that is, a set of k medoids 

• If the local optimum is found, CLARANS starts 

with new randomly selected node in search for a 

new local optimum 

• It is more efficient and scalable than both PAM 



Hierarchical Clustering 

• Use distance matrix as clustering criteria.  This 

method does not require the number of clusters 

k as an input, but needs a termination condition  
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AGNES (Agglomerative 

Nesting) 

• Introduced in Kaufmann and Rousseeuw (1990) 

• Implemented in statistical analysis packages, e.g., 
Splus 

• Use the Single-Link method and the dissimilarity 
matrix.   

• Merge nodes that have the least dissimilarity 

• Go on in a non-descending fashion 

• Eventually all nodes belong to the same cluster 
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Dendrogram: Shows How the Clusters are Merged 

Decompose data objects into a several levels of nested 
partitioning (tree of clusters), called a dendrogram.  
 
A clustering of the data objects is obtained by cutting the 
dendrogram at the desired level, then each connected 
component forms a cluster. 



DIANA (Divisive Analysis) 

• Introduced in Kaufmann and Rousseeuw (1990) 

• Implemented in statistical analysis packages, e.g., 

Splus 

• Inverse order of AGNES 

• Eventually each node forms a cluster on its own 
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Recent Hierarchical Clustering 

Methods 

• Major weakness of agglomerative clustering 

methods 

– do not scale well: time complexity of at least O(n2), 

where n is the number of total objects 

– can never undo what was done previously 

• Integration of hierarchical with distance-based 

clustering 

– BIRCH (1996): uses CF-tree and incrementally adjusts 

the quality of sub-clusters 

– ROCK (1999): clustering categorical data by neighbor 

and link analysis 

– CHAMELEON (1999): hierarchical clustering using 



Clustering High-Dimensional 

Data 
• Clustering high-dimensional data 

– Many applications: text documents, DNA micro-array data 

– Major challenges:  

• Many irrelevant dimensions may mask clusters 

• Distance measure becomes meaningless—due to equi-distance 

• Clusters may exist only in some subspaces 

• Methods 

– Feature transformation: only effective if most dimensions are relevant 

• PCA & SVD useful only when features are highly correlated/redundant 

– Feature selection: wrapper or filter approaches 

• useful to find a subspace where the data have nice clusters 

– Subspace-clustering: find clusters in all the possible subspaces 

• CLIQUE, ProClus, and frequent pattern-based clustering 



The Curse of Dimensionality 

 (graphs adapted from Parsons et al. KDD 

Explorations 2004) 
• Data in only one dimension is 

relatively packed 

• Adding a dimension “stretch” the  

points across that dimension, 

making them further apart 

• Adding more dimensions will 

make the points further apart—

high dimensional data is 

extremely sparse 

• Distance measure becomes 

meaningless—due to equi-



Why Subspace 

Clustering? 
(adapted from Parsons et al. SIGKDD 

Explorations 2004) • Clusters may exist only in some subspaces 

• Subspace-clustering: find clusters in all the 

subspaces 



What Is Outlier Discovery? 

• What are outliers? 

– The set of objects are considerably dissimilar from the 

remainder of the data 

– Example:  Sports: Michael Jordon, Wayne Gretzky, ... 

• Problem: Define and find outliers in large data 

sets 

• Applications: 

– Credit card fraud detection 

– Telecom fraud detection 

– Customer segmentation 

– Medical analysis 



Outlier Discovery: 

Statistical 

Approaches 

Assume a model underlying distribution that 

generates data set (e.g. normal distribution)  

• Use discordancy tests depending on  

– data distribution 

– distribution parameter (e.g., mean, variance) 

– number of expected outliers 

• Drawbacks 

– most tests are for single attribute 

– In many cases, data distribution may not be known 



Outlier Discovery: Distance-Based 

Approach 

• Introduced to counter the main limitations 

imposed by statistical methods 

– We need multi-dimensional analysis without knowing 

data distribution 

• Distance-based outlier: A DB(p, D)-outlier is an 

object O in a dataset T such that at least a 

fraction p of the objects in T lies at a distance 

greater than D from O 

• Algorithms for mining distance-based outliers   

– Index-based algorithm 

– Nested-loop algorithm  

– Cell-based algorithm 



Density-Based 

Local Outlier 

Detection 
• Distance-based outlier 

detection is based on 
global distance distribution 

• It encounters difficulties to 
identify outliers if data is 
not uniformly distributed 

• Ex. C1 contains 400 loosely 
distributed points, C2 has 
100 tightly condensed 
points, 2 outlier points o1, 
o2 

• Distance-based method 
cannot identify o2 as an 
outlier 

• Local outlier factor 
(LOF) 
– Assume outlier is not 

crisp 

– Each point has a LOF 


